INTEGRAL KLEIN BOTTLE SURGERIES AND IMMERSED CURVES: SOME OBSTRUCTIONS FOR FIBERED KNOTS

1. Proof of $K=6_2$ case

Determining $\widehat{HF}(S_4^3(6_2),[s])$, by finding $HF(\overline{\gamma_{6_2}},\ell_4^{[s]})$, we see that when $K=6_2$, the corresponding $\dim \widehat{HF}(S_4^3(6_2),[s])=\begin{cases} 1 & \text{if } [s]=0,2.\\ 3 & \text{if } [s]=-1,1. \end{cases}$

FIGURE 1. $\overline{\gamma_{6_2}}$ (red) vs $\ell_4^{[s]}$ (blue). The dim $\widehat{HF}(S_4^3(6_2),[s])$ if [s]=i is determined by the number of intersections of ℓ_4^i and $\overline{\gamma_{6_2}}$, as marked in green.

Theorem 1.1. Suppose
$$\dim \widehat{HF}(S_4^3(K), [s]) = \begin{cases} 1 & \text{if } [s] = 0, 2. \\ 3 & \text{if } [s] = -1, 1. \end{cases}$$

and $J \subseteq S^3$. Then there does not exist a J such that $S_4^3(K) \cong (S^3 \setminus vJ) \cup_h \cdot N$.

Suppose, for the sake of contradiction, that there exists $J \subseteq S^3$ such that $S_4^3(K) \cong (S^3 \backslash vJ) \cup_h \cdot N$. Then there exists a configuration of J for which two of the curves in $\widetilde{\gamma}_N$ intersect $\widetilde{\gamma}_J$ three times, while the remaining two curves of $\widetilde{\gamma}_N$ intersect $\widetilde{\gamma}_J$ exactly once.

To restrict the possible configurations of J, we will analyze the behavior of $\widetilde{\gamma}_N$ and $\widetilde{\gamma}_J$ near the punctures. Since $\widetilde{\gamma}_N$ is fixed, its curves determine where intersections

with any possible $\widetilde{\gamma}_J$ may occur. We distinguish the curves of $\widetilde{\gamma}_N$ by labeling them $\widetilde{\gamma}_{N_1}$, $\widetilde{\gamma}_{N_2}$, $\widetilde{\gamma}_{N_3}$, and $\widetilde{\gamma}_{N_4}$, listed from top to bottom.

FIGURE 2. $\widetilde{\gamma}_N$ (blue). The four curves of $\widetilde{\gamma}_N$ are labeled as $\widetilde{\gamma}_{N_i}$ for i=1,2,3,4 from top to bottom.

One common behavior of $\widetilde{\gamma}_J$ is winding vertically around adjacent punctures (See Figure 3). When the curve is tightened, it behaves like a vertical line between the punctures, also known as the pegboard representation (See Figure 4). Combined with the fact that each curve of $\widetilde{\gamma}_N$ passes through specific vertical sections, this allows us to rule out certain $\widetilde{\gamma}_J$ whose vertical behavior would result in too many or too few intersections with $\widetilde{\gamma}_N$.

FIGURE 3. Non-tightened visualization of a common winding around two punctures for a possible $\widetilde{\gamma}_J$.

FIGURE 4. Tightened visualization of a common winding around two punctures for a possible $\tilde{\gamma}_J$.

To describe the possible vertical behavior of $\widetilde{\gamma}_J$, we define n_k to be the number of vertical segments in the pegboard representative of $\widetilde{\gamma}_J$ that are parallel to $\overline{\mu}_k$, the lift of $\widetilde{\mu}$ at height k (see Figure 5). Outside of a small horizontal neighborhood around $\overline{\mu}$, possible intersections are less predictable; we denote this region by ρ .

FIGURE 5. Vertical line $\overline{\mu}$ (orange), with $\overline{\mu}_k$ at height k, and the area outside of the vertical lines ρ (red).

FIGURE 6. $\widetilde{\gamma_N}$ (blue) vs $\overline{\mu}_i$ (orange). Each intersection is marked with a purple dot.

For the reader's convenience, we introduce a simple notation to describe intersections involving $\widetilde{\gamma}_{N_i}$. We write $\pitchfork\left(\widetilde{\gamma}_{N_i},\widetilde{\gamma}_J\right)$ to denote the number of intersections between $\widetilde{\gamma}_{N_i}$ and $\widetilde{\gamma}_J$, where each term appears with a coefficient indicating how many times it is intersected. For example, if $\widetilde{\gamma}_{N_x}$ intersects $\overline{\mu}_y$ once and $\overline{\mu}_z$ twice, and if $n_y=1$ and $n_z=1$, then:

$$\pitchfork (\widetilde{\gamma}_{N_x}, \widetilde{\gamma}_J) = n_y \overline{\mu}_y + 2n_z \overline{\mu}_z = \overline{\mu}_y + 2\overline{\mu}_z = 3$$

To avoid redundancy in our notation, we will write $n_k \overline{\mu}_k$ simply as n_k , since these terms typically appear together. Thus, for the example above:

$$\pitchfork \left(\widetilde{\gamma}_{N_x}, \widetilde{\gamma}_J\right) = n_y + 2n_z = 3$$

Furthermore, we must also account for intersections between $\widetilde{\gamma}_{N_i}$ and $\widetilde{\gamma}_J$ in the ρ region. Since these intersections cannot be determined explicitly without specifying the knot J, we introduce, for each $\widetilde{\gamma}_{N_i}$, a variable x_i representing the number of intersections between $\widetilde{\gamma}_{N_i}$ and $\widetilde{\gamma}_J$ in the ρ zone. Thus, if we set \pitchfork $(\widetilde{\gamma}_{N_i}, \overline{\mu}_k) = y_k$, then for any $\widetilde{\gamma}_{N_i}$ and $\widetilde{\gamma}_J$:

$$\pitchfork (\widetilde{\gamma}_{N_i}, \widetilde{\gamma}_J) = \dots + y_{-1}n_{-1} + y_0n_0 + y_1n_1 + \dots + x_i\rho$$

Using the pattern of $\widetilde{\gamma}_N$ shown in Figure 6, the intersections between $\widetilde{\gamma}_{N_i}$ and $\widetilde{\gamma}_J$ are given by:

Lemma 1.2. Suppose $X = (S^3 \setminus \nu J) \cup N$. If $\dim(\widehat{HF}(X, [s]) \leq 3$ for each [s], then $\forall k \in \mathbb{N}, \pitchfork(\widetilde{\gamma}_N, \overline{\mu}_{+k}) = 0$.

Since we know that $\widetilde{\gamma}_J$ is rotationally symmetric by π [HRW22, Theorem 7], then $n_k=n_{-k}$. Thus:

$$\begin{split} &\pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = \dots + 2n_3 + 2n_1 + 2n_1 + 2n_3 + \dots \\ &\pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = \dots + 2n_2 + 2n_0 + 2n_2 + \dots \\ &\pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = \dots + n_2 + n_1 + n_0 + n_1 + n_2 + \dots \\ &\pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = \dots + n_2 + n_1 + n_0 + n_1 + n_2 + \dots \\ \end{split}$$

And:

$$\begin{split} &\pitchfork\left(\widetilde{\gamma}_{N_1},\widetilde{\gamma}_J\right) = 4n_1 + 4n_3 + \dots \\ &\pitchfork\left(\widetilde{\gamma}_{N_2},\widetilde{\gamma}_J\right) = 2n_0 + 4n_2 + \dots \\ &\pitchfork\left(\widetilde{\gamma}_{N_3},\widetilde{\gamma}_J\right) = n_0 + 2n_1 + 2n_2 + \dots \\ &\pitchfork\left(\widetilde{\gamma}_{N_4},\widetilde{\gamma}_J\right) = n_0 + 2n_1 + 2n_2 + \dots \\ &+ x_4\rho \end{split}$$

Since $\dim(\widehat{HF}(X,[s]) \leq 3$, we have that $\forall k \in \mathbb{N}, n_{\pm k} = 0$. Indeed, if $n_{\pm k} > 0$ for any odd integer k, then $\pitchfork(\widetilde{\gamma}_{N_1},\widetilde{\gamma}_J) \geq 4$; similarly, if $n_{\pm k} > 0$ for any even integer k > 0, then $\pitchfork(\widetilde{\gamma}_{N_2},\widetilde{\gamma}_J) \geq 4$. Therefore, $n_{\pm k} = 0$. Thus:

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = & x_1 \rho \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 2 n_0 & + x_2 \rho \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = n_0 & + x_3 \rho \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = n_0 & + x_4 \rho \end{split}$$

From this, we also deduce that $n_0 < 2$, since if $n_0 \ge 2$, then $\pitchfork (\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J) \ge 4 > 3$. This leaves only a few possibilities for J. If we set $n_0 = 0$, the only possible J is the unknot (U); if we set $n_0 = 1$, the only candidates for J are the left-handed trefoil (T(2, -3)) and the right-handed trefoil (T(2, 3)).

For the unknot, we find (Figure 7):

FIGURE 7. $\widetilde{\gamma}_U$ (red) vs. $\widetilde{\gamma}_N$ (blue). Intersections are marked in green.

FIGURE 8. $\widetilde{\gamma}_{T(2,-3)}$ (red) vs. $\widetilde{\gamma}_{N}$ (blue). Intersections are marked in green.

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = 1 * \rho & = 1 \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 1 * \rho & = 1 \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = 1 * \rho & = 1 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = 1 * \rho & = 1 \end{split}$$

Since $\pitchfork(\widetilde{\gamma}_{N_i},\widetilde{\gamma}_J)\neq 3$ for any i=1,2,3,4, it follows that $J\neq U$.

For the left-handed trefoil, we find (Figure 8):

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = 1 * \rho & = 1 \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 2 * \overline{\mu}_0 + 3 * \rho & = 5 \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = 1 * \overline{\mu}_0 + 2 * \rho & = 3 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = 1 * \overline{\mu}_0 + 2 * \rho & = 3 \end{split}$$

Since $\pitchfork(\widetilde{\gamma}_{N_2},\widetilde{\gamma}_J)=5$, it follows that $J\neq T(2,-3)$.

Finally, for the right-handed trefoil, we find (Figure 9):

FIGURE 9. $\widetilde{\gamma}_{T(2,3)}$ (red) vs. $\widetilde{\gamma}_N$ (blue). Intersections are marked in green.

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = 1 * \rho & = 1 \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 2 * \overline{\mu}_0 + 1 * \rho & = 3 \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = 1 * \overline{\mu}_0 & = 1 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = 1 * \overline{\mu}_0 & = 1 \end{split}$$

Since only one curve results in 3 intersections, it follows that $J \neq T(2,3)$.

Thus, no $\widetilde{\gamma}_J$ exists that results in the correct number of intersections with the curves of $\widetilde{\gamma}_N$.

$$\therefore \nexists J \ni S_4^3(6_2) \cong (S^3 \backslash vJ) \cup_h \cdot N.$$

2. Proof of Fibered Knot case (g(K) = 2)

For the reader's convenience, we simplify the four possible values of [s] in $\widehat{dim}\,\widehat{HF}(S^3_4(K),[s])$ into a reduced notation involving only two values. This reduction is justified as follows. First, the cases [s]=1 and [s]=-1 yield the same dimension, since $\overline{\gamma}_K$ is rotationally symmetric ([HRW22, Theorem 7]). Therefore, we treat these two cases as equivalent. Additionally, we have $\widehat{dim}\,\widehat{HF}(S^3_4(K),[s])=1$ when [s]=2, because for any knot K, the curve $\overline{\gamma}_K$ intersects ℓ_4^2 in exactly one

location—specifically, the horizontal component on the left. Any other potential intersections at height 2 can be avoided when $\overline{\gamma}_K$ is tightened.

The notation we will adopt for $\widehat{dim}\widehat{HF}(S_4^3(K),[s])$ is the ordered pair $\{\alpha,\beta\}$ where α is $\widehat{dim}\widehat{HF}(S_4^3(K),[s])$ if [s]=0, and β is $\widehat{dim}\widehat{HF}(S_4^3(K),[s])$ if $[s]=\pm 1$.

Theorem 2.1. Suppose dim $\widehat{HF}(S_4^3(K), [s])$ is determined by a Fibered Knot K, $K \subseteq S^3$, of genus 2 (g(K) = 2) and let $J \subseteq S^3$ such that $S_4^3(K) \cong (S^3 \setminus vJ) \cup_h \cdot N$. Then J or its curve invariant $\overline{\gamma}_J$ must satisfy:

- \bullet J = U
- $J = T(2, \pm 3)$
- $J = 4_1$
- $\overline{\gamma}_J = \overline{\gamma}_U \bigcup \overline{\gamma}_{4_1}$

Definition 2.2. Fibered Knot: A Knot K_0 is fibered if at its genus height $g(K_0)$, only one intersection with the curve $\widetilde{\gamma}_{K_0}$ and $\overline{\mu}_{q(K_0)}$ exists.

Proposition 2.3. In the case where $K \subseteq S^3$ is a fibered knot of genus g(K) = 2, the only distinct values of $\widehat{HF}(S^3_4(K), [s])$ for which there exists a knot or link $J \subseteq S^3$ satisfying $S^3_4(K) \cong (S^3 \setminus vJ) \cup_h \cdot N$ are the following pairs: $\{1, 1\}, \{3, 1\}, \{5, 3\}, \{7, 3\}$.

We can restrict the possible values of $\widehat{\mathrm{dim}}\widehat{HF}(S^3_4(K),[s])$ for which there may exist a knot or link $J\subseteq S^3$ such that $S^3_4(K)\cong (S^3\backslash vJ)\cup_h\cdot N$ to the following eight distinct combinations: $\{1,1\},\{1,3\},\{3,1\},\{3,3\},\{5,1\},\{5,3\},\{7,1\},\{7,3\}$. We can put these limitations because:

- i)Both α and β must be odd.
- $ii) \max(\beta) = 3.$
- $iii) \max(\alpha) = 7.$
- i) Previously established theorem?
- ii) Since K is fibered, the possible configurations of $\overline{\gamma}_K$ at height 1 are constrained. These configurations depend on the value of the knot invariant τ_K :
- (a) If $\tau_K = 0$ or $\tau_K = 1$, then a figure-eight curve must appear at height 1 in order to ensure that g(K) = 2. However, only a single figure-eight is permitted; the presence of more than one would violate the fiberedness of K. In this case, $\dim \widehat{HF}(S_4^3(K), [s]) = 3$ for $[s] = \pm 1$, arising from one intersection with the $\widetilde{\gamma}_0$ curve and two intersections with the figure-eight.
- (b) If $\tau_K = 2$, then $\bar{\gamma}_K$ begins at height 2 and descends to height -2 to maintain rotational symmetry. In this scenario, there can be at most one intersection with $[s] = \pm 1$ at height 1, occurring during the initial descent. Any attempt to return to height 2 would contradict the fiberedness of K. Moreover, no figure-eight

can be centered at height 1, as it would intersect n_2 , again violating the fibered condition. Consequently, we have $\widehat{HF}(S_4^3(K), [s]) = 1$ for $[s] = \pm 1$.

Thus, $\max(\beta) = 3$.

Proposition 2.4. Let $k \in \mathbb{Z}$. Suppose $n_{|k|} = 0$, then it follows that $n_{|k|+1} = 2s$, for some $s \in \mathbb{N}$. Since $\widetilde{\gamma}_J$ is rotationally symmetric by π , the absence of vertical segments at at height |k| implies that there is no vertical connection from $n_{|k|+1}$ to $n_{-(|k|+1)}$. The only structure that can exist in this setting is the figure-eight curve, each of which contributes two vertical segments at height |k| + 1. Therefore, if $n_{|k|} = 0$, then $n_{|k|+1} = 2s$ where s is the number of figure-eight components centered at height |k| + 1.

Proposition 2.5. Suppose dim $\widehat{HF}(S_4^3(K), [s])$ is determined by a Fibered Knot K of genus 2 g(K) = 2, and let $J \subseteq S^3$ be such that $S_4^3(K) \cong (S^3 \setminus vJ) \cup_h \cdot N$. Then it must be the case that $n_k = 0$ for some $k \in \mathbb{N}$.

We already know that for any $\widetilde{\gamma}_N$ and $\widetilde{\gamma}_J$:

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = 4n_1 + 4n_3 + \dots \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 2n_0 + 4n_2 + \dots \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = n_0 + 2n_1 + 2n_2 + \dots \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = n_0 + 2n_1 + 2n_2 + \dots \\ & + x_4 \rho \end{split}$$

By Proposition 2.4, we can show that $n_k=0, \forall k\in\mathbb{N}\ni k\geq 2$. Since every instance of $\widehat{\operatorname{dim}}\widehat{HF}(S^3_4(K),[s])$ includes the value 1 when [s]=2, it follows that at least one curve of $\widetilde{\gamma}_N$ must intersect $\widetilde{\gamma}_J$ exactly once. Additionally, from the constraints discussed in (ii), two other curves of $\widetilde{\gamma}_N$ can intersect $\widetilde{\gamma}_J$ at most three times. In order for $\pitchfork(\widetilde{\gamma}_{N_i},\widetilde{\gamma}_J)=1$ for some i, it is necessary that for all $k\geq 1$, both n_k and n_{k+1} cannot be simultaneously nonzero. Otherwise, the total intersection number would be $\pitchfork(\widetilde{\gamma}_{N_i},\widetilde{\gamma}_J)\geq 4,\ i=1,2,3,4$. Therefore, for $k\geq 1$, if $n_{k+1}>0, n_k=0$. By Proposition 2.4, this implies that $n_{k+1}=2s$ for some $s\in\mathbb{N}$. However, if $n_{k+1}>1$, then $\pitchfork(\widetilde{\gamma}_{N_i},\widetilde{\gamma}_J)\geq 4, i=3,4$, again violating the intersection constraints. Thus, for $k\geq 2, n_k=0$:

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = 4n_1 \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 2n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = n_0 + 2n_1 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = n_0 + 2n_1 \\ \end{split} \\ & + x_3 \rho$$

Further, if $n_1 > 0$, then either (a) $n_0 \ge 1$, resulting in $\pitchfork (\widetilde{\gamma}_{N_i}, \widetilde{\gamma}_J) \ge 2$, i = 1, 2, 3, 4. Or (b) $n_1 > 1$, $n_0 = 0$, which, by Proposition 2.4, would cause $n_1 = 0 + 2s$ resulting in $\pitchfork (\widetilde{\gamma}_{N_i}, \widetilde{\gamma}_J) \ge 4$, i = 3, 4. Therefore, $n_k = 0$ for some $k \in \mathbb{N}/$:

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 2n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = n_0 \\ & + x_3 \rho \end{split}$$

iii) So far we have shown that the possibilities for each dim $\widehat{HF}(S^3_4(K),[s])$ are:

$$1 \text{ if } [s] = 2$$

$$1, 3 \text{ if } [s] = \pm 1$$

$$1, 3, 5, 7, 9 \dots \text{ if } [s] = 0$$

Let $\alpha \geq 9$. Then $\pitchfork(\widetilde{\gamma}_{N_i}, \widetilde{\gamma}_J) \geq 9$, while at least one of the other curves of $\widetilde{\gamma}_{N_i}$ results in $\pitchfork(\widetilde{\gamma}_{N_i}, \widetilde{\gamma}_J) = 1$. By Proposition 2.5, we know:

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 2n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = n_0 \\ & + x_4 \rho \end{split}$$

To achieve a total intersection number $\pitchfork (\widetilde{\gamma}_N, \widetilde{\gamma}_J) \geq 9$, one would need to increase the value of n_0 . However, n_0 must satisfy $n_0 < 4$, since if $n_0 \geq 4$, then $\pitchfork (\widetilde{\gamma}_{N_i}, \widetilde{\gamma}_J) \geq 4, i = 3, 4$, which would violate the constraints established in (ii). The only admissible configurations for J when $n_0 < 4$ are as follows:

 $n_0 = 0$: The unknot U.

 $n_0 = 1$: The trefoils T(2,3), T(2,-3).

 $n_0 = 2$: The unknot U with a figure-eight centered at height 0.

 $n_0 = 3: T(2,3)$ or T(2,-3) with a figure-eight centered at height 0.

Among these, the only configuration that results in 9 or more intersections is T(2,-3) with a figure-eight centered at height 0. However, in this case $\pitchfork(\tilde{\gamma}_{N_i},\tilde{\gamma}_J)=5$, for i=3,4, which violates our constraints. Therefore, $\max(\alpha)=7$.

Thus, the only possibilities for each dim $\widehat{HF}(S^3_4(K), [s])$ are :

$$\begin{array}{c} 1 \text{ if } [s] = 2 \\ 1, 3 \text{ if } [s] = \pm 1 \\ 1, 3, 5, 7 \text{ if } [s] = 0 \end{array}$$

Which gives us the eight unique combinations of $\{1,1\},\{1,3\},\{3,1\},\{3,3\},\{5,1\},\{5,3\},\{7,1\},\{7,3\}.$

Theorem 2.6. Suppose $\dim \widehat{HF}(S_4^3(K), [s]) = \{1, 3\}, \{5, 1\}, \{3, 3\} \text{ or } \{7, 1\}.$ Then $\nexists J \subseteq S^3 \text{ such that } S_4^3(K) \cong (S^3 \backslash vJ) \cup_h \cdot N.$

1) Suppose dim $\widehat{HF}(S_4^3(K), [s]) = \{1, 3\}$. Then $\nexists J \ni S_4^3(K) \cong (S^3 \backslash vJ) \cup_h \cdot N$.

See Theorem 1.1.

2) and 3) Suppose $\dim \widehat{HF}(S_4^3(K), [s]) = \{5, 1\}$ or $\dim \widehat{HF}(S_4^3(K), [s]) = \{7, 1\}$. Then $\nexists J$ such that $S_4^3(K) \cong (S^3 \setminus vJ) \cup_h \cdot N$.

We know that, through proposition 2.5:

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 2n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = n_0 \\ \end{split}$$

We cannot set $n_0 \geq 2$ as this would imply $\pitchfork (\widetilde{\gamma}_{N_i}, \widetilde{\gamma}_J) \geq 2$ for i = 3, 4 which violates the requirement that three curves of $\widetilde{\gamma}_{N_i}$ intersect $\widetilde{\gamma}_J$) only once. Therefore, we are restricted to the cases $n_0 = 1$ or $n_0 = 0$, which correspond to the following possibilities for J:

$$n_0=0:U, \text{ for which } \pitchfork(\widetilde{\gamma}_{N_i},\widetilde{\gamma}_J)=1 \text{ for all } i=1,2,3,4.$$
 $n_0=1:T(2,3) \text{ and } T(2,-3).$ For which:
$$\pitchfork(\widetilde{\gamma}_{N_2},\widetilde{\gamma}_J)=3 \text{ for } T(2,3).$$

$$\pitchfork(\widetilde{\gamma}_{N_3},\widetilde{\gamma}_J)=3 \text{ for } T(2,-3).$$

None of these configurations yield the correct intersections patterns required for $\{5,1\}$ or $\{7,1\}$.

4) Suppose dim $\widehat{HF}(S_4^3(K),[s])=\{3,3\}$. Then $\nexists J$ such that $S_4^3(K)\cong (S^3\backslash vJ)\cup_h\cdot N$.

We know that, through proposition 2.5:

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 2n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = n_0 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = n_0 \\ \end{split}$$

Since $n_0 < 2$ as any larger value would result in $\pitchfork (\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J) \ge 4$, which violates the constraints, this again leaves us with either T(2,3), T(2,-3), or U. However, none of these configurations yield $\{3,3\}$.

Therefore the only remaining dimension sets for which there exists a knot or link $J \subseteq S^3$ such that $S_4^3(K) \cong (S^3 \setminus vJ) \cup_h \cdot N$ for a fibered knots K of genus g(K) = 2, and which have not been eliminated from consideration, are

 $\{1,1\},\{3,1\},\{5,3\},\{7,3\}.$ Their corresponding $\overline{\gamma}_K$ vs $\ell_4^{[s]}$ graphs are (Figure 10-13):

FIGURE 10. $\overline{\gamma}_K$ (red) vs $\ell_4^{[s]}$ (blue). Intersections are marked in green. Results in $\{1,1\}$.

FIGURE 11. $\overline{\gamma}_K$ (red) vs $\ell_4^{[s]}$ (blue). Intersections are marked in green. Results in $\{3,1\}$.

By Proposition 2.5, we know that $n_k = 0$ for all $k \in \mathbb{N}$. Therefore, the only degrees of freedom in constructing possible $\widetilde{\gamma}_J$ arise from the value of n_0 and the structure of the horizontal component $\widetilde{\gamma}_{J_0}$. Since $n_0 \leq 4$, as any larger value would result in $\pitchfork (\widetilde{\gamma}_{N_i}, \widetilde{\gamma}_J) \geq 4, i = 3, 4$, which is incompatible with our possible $\dim \widehat{HF}(S^3_4(K), [s])$. Thus, we restrict to the cases $n_0 = 0, 1, 2, 3$, giving us the following knots:

 $n_0 = 0$: The unknot U.

 $n_0 = 1$: The trefoils T(2,3), T(2,-3).

 $n_0 = 2$: The unknot U with a figure-eight centered at height 0.

 $n_0 = 3: T(2,3)$ or T(2,-3) with a figure-eight centered at height 0.

Among these, five configurations correspond to the admissible dimension sets $\{1,1\},\{3,1\},\{5,3\},\{7,3\}$, and those are:

For $\{1,1\}$, J=U (see Figure 7).

For $\{3, 1\}$, J = T(2, 3) (see Figure 9).

FIGURE 12. $\overline{\gamma}_K$ (red) vs $\ell_4^{[s]}$ (blue). Intersections are marked in green. Results in $\{5,3\}$.

FIGURE 13. $\overline{\gamma}_K$ (red) vs $\ell_4^{[s]}$ (blue). Intersections are marked in green. Results in $\{7,3\}$.

For $\{5,3\},\ J=T(2,-3)$ (see Figure 8) or $J=U\times figure-8$ (see Figure 14) with :

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = 1 * \rho & = 1 \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 4 * \widetilde{\mu}_0 + 1 * \rho & = 5 \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = 2 * \widetilde{\mu}_0 + 1 * \rho & = 3 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = 2 * \widetilde{\mu}_0 + 1 * \rho & = 3 \end{split}$$

For $\{7,3\}$, $J = T(2,3) \times figure - 8$ (see Figure 15) with:

$$\begin{split} & \pitchfork \left(\widetilde{\gamma}_{N_1}, \widetilde{\gamma}_J \right) = 1 * \rho & = 1 \\ & \pitchfork \left(\widetilde{\gamma}_{N_2}, \widetilde{\gamma}_J \right) = 6 * \widetilde{\mu}_0 & = 7 \\ & \pitchfork \left(\widetilde{\gamma}_{N_3}, \widetilde{\gamma}_J \right) = 3 * \widetilde{\mu}_0 & = 3 \\ & \pitchfork \left(\widetilde{\gamma}_{N_4}, \widetilde{\gamma}_J \right) = 3 * \widetilde{\mu}_0 & = 3 \end{split}$$

FIGURE 14. $\widetilde{\gamma}_{?}$ (red) vs. $\widetilde{\gamma}_{N}$ (blue). Intersections are marked in green. (Note: When tightened, the figure-8's centered at 0 behave as two intersections at each $\overline{\mu}_{0}$. Loosened for visual clarity.)

FIGURE 15. $\widetilde{\gamma}_{??}$ (red) vs. $\widetilde{\gamma}_N$ (blue). Intersections are marked in green.

INTEGRAL KLEIN BOTTLE SURGERIES AND IMMERSED CURVES: SOME OBSTRUCTIONS FOR FIBERED KNOTS

References

[HRW22] Jonathan Hanselman, Jacob Rasmussen, and Liam Watson. Heegaard Floer homology for manifolds with torus boundary: properties and examples. Proc. Lond. Math. Soc. (3), 125(4):879–967, 2022.